The California Energy Commission (CEC), Office of Governor Newsom, and the California Independent System Operator (ISO) held a joint remote workshop on August 12, 2022 to discuss California’s energy situation and the plan to extend the operating license of Diablo Canyon. Over 600 people attended this remote meeting and there were hours of public comment. Below are the Mothers for Peace oral comments:
Peter Bradford, former U.S. Nuclear Regulatory Commissioner
My name is Peter Bradford. I am a former U.S. Nuclear Regulatory Commissioner as well as former chair of the New York and Maine utility regulatory commissions. I have taught courses covering nuclear energy policy and utility regulatory law at Yale University and at Vermont Law School.
Though many people believe that operating an existing nuclear power plant provides a relatively inexpensive source of electricity, this is not the
case. Aging reactors encounter inefficiencies, malfunctions and necessary investments that can render them neither cheap nor reliable. A dozen (of 104) US nuclear power plants – including San Onofre in California – have closed in the last eight years precisely because their output became too expensive to be sold in the power markets in which they operated.
France, often touted as the world’s model nuclear nation, has in 2022 endured the near collapse of its aging nuclear fleet. Throughout Europe’s Ukraine-driven energy crisis, about half of France’s nuclear capacity has remained off-line for reasons related to the age of reactors that came online about when Diablo Canyon did. Indeed, France has had to buy power from countries like Germany that have carried out the closing and low carbon replacement of many nuclear reactors. French electric rates are now among Europe’s highest.
In addition to the U.S. plants that have closed, a dozen more have required tens of billions of dollars in subsidies through consumer electric bills and in suppressed competition to stay open. The federal government is proposing tens of billions more from U.S. taxpayers. The legislation being proposed to keep Diablo Canyon open also contemplates massive subsidies to the plant, money that might well do more for the climate and for reliability if spent on the other low or zero carbon sources that are crowded out by extended commitments to take power from the uneconomic reactors. A crucial question unanswered during the workshop is whether the inevitably expensive continued operation of Diablo Canyon is really the least cost way to meet California’s need for a reliable and a decarbonized electric
system.
California has the capability to test the various ways available to meet its energy needs. It has been doing so while spending a lot of money to implement the Diablo Canyon settlement signed and approved several years ago. After extensive analysis, Diablo Canyon was expressly found not to offer the low-cost answer to California’s energy future after 2025. Whether it has somehow morphed into that position can be tested again before the units close if need be, but it cannot be prudently tested in the hurried political cattle drive that passing sweeping subsidy and environmental suppression legislation without meaningful hearings or public input during August of 2022 would entail.
Amory B. Lovins, physicist and adjunct professor of civil and environmental engineer at Stanford University.
Six years ago, I published a Forbes business article called “Closing Diablo Canyon Nuclear Plant Will Save Money and Carbon.” It praised PG&E’s decision to phase out those twin reactors’ total 2.2 GW of net capacity in November 2024 and late August 2025, after ample and timely carbon-free replacements were competitively procured.
This was foremost a rational economic choice, because the plant was cheaper to close than to run—by at least $1 billion, NRDC calculated, and plausibly by multiple billions. PG&E also found that closing Diablo would help integrate more renewable power reliably into the grid by freeing up market space and grid capacity for cheaper carbon-free competitors to contest. In the modern grid dominated by nearly-free-to-run solar and windpower, reactors’ inflexibility and need to run nearly constantly make them unfit for purpose. Because renewables and efficiency cost less per kWh than Diablo’s forward levelized cost, they’d save more kWh per dollar, and thus displace more fossil-fueled electricity, than continued nuclear operation. Closure would also moot potentially costly seismic and cooling issues and broader safety concerns. Finally, PG&E offered transitional help for workers and communities. This logic achieved a 2016 agreement among the stakeholders, later ratified by all three branches of California’s government. It was being routinely executed—until now.
When policy followup lagged, wildfires and grid-reliability concerns briskly refocused attention. The CPUC last year approved a massive 11.5-GW resource procurement by 2026. Another 4 GW came online in 2021 alone, including 2.4 GW (more than a Diablo’s worth) of ultrafast and reliable batteries. Yet despite coherent policy refinements, this Workshop reflects some advocates’ ardor to reverse the agreed nuclear phaseout, whatever the unstated cost and risk.
Twenty days before the close of the 2022 legislative session, the Governor proposed a ten-year Diablo Canyon life extension, with exemption from bedrock environmental laws and marine protection, an unsupported legislative finding of cost-effectiveness, statewide socialization of unknown costs, and a forgivable $1.4 billion state loan. This last-minute proposal reflects no utility’s proposal, no agency’s plan, no published analysis. It reverses but doesn’t even mention the all-parties orderly-phaseout agreement that almost every legislator voted for just fouryears ago. Sacramento may need to dispatch fleets of ambulances for victims of mass whiplash.
The apparent rationale is a sketchily based concern that without Diablo’s reactors, a combination of extreme heat, drought, and wildfires, plus supply-chain and tariff disruptions to planned supplies, might leave California short by ~1.8 GW in September 2025. This dark vision ignores lessons from California’s prolonged 2000–01 power emergency, when (despite already-exceptional energy efficiency) a statewide campaign led by the Governor’s office cut power demand by 12% (4.8 GW) in a few months. That’s more than double Diablo’s share of the latest heat-driven 60+-GW demand estimate. And if summertime demand did suffer brief but giant surges, inflexible reactors would be the least sensible way to meet them.
It’s also almost certainly the costliest way. The Governor’s proposal implausibly assumes that continued nuclear operation could meet the posited need more cheaply than other ways to do the same thing safely, securely, cleanly, flexibly, resiliently, and attractively—chiefly renewable supply plus efficient and timely use. Diablo Canyon’s units are among the costlier to run among US reactors, which are generically so uneconomic that Congress just bailed them out with tens of billions of dollars in new subsidies. US nuclear operation has rarely if ever bid against the slate of carbon-free alternatives, let alone won. Diablo Canyon is especially unlikely to win.
But the proposal doesn’t just assume cost-effectiveness. It mandates a nuclear solution in place of that amount of competitive procurement. At a stroke, this substitution of handwaving assumptions for market discipline—crowning a winner with no analysis of alternatives, no bids, and unknown prices—would necessarily displace the same amount of efficiency and renewables already being competitively procured. (Technically, either renewable or nuclear output would get curtailed, idling investments.) This would abandon every basic lesson California’s energy policy has taught us in the past half-century. Reserves against contingencies should be procured and available, but just once, and at least cost.
Supply-chain concerns
That said, concerns about timely implementation are not frivolous. As disruptions from COVID-19 and Putin’s War continue to reverberate through the global economy, it’s fair to ask if strained supply chains can be relied upon for timely delivery of equipment to replace Diablo’s 2.2 GW in the next three years.
For perspective, renewable power is adding about 300 GW of global supply each year, and industry expects solar photovoltaic (PV) power alone to add that much in 2025. California added 3.0 GW of PV capacity just in 2021—a Diablo’s worth of capacity every nine months, shiftable into evening peak hours by the hybrid storage that now dominates new California PV projects. By year-end, about 70 GW of PVs (95% combined with batteries), and nearly twice that much in total battery projects, had been queued for connection to the California grid.
The complex PV supply chain has been especially stressed of late by extraordinary growth plus geopolitical, tariff, and Uighur-forced-labor disputes. Nonetheless, in 2021 it shipped 194 GWdc (47% above 2020), installed 172 GWdc, and continued to accelerate. Supplying an extra 0.9 GWdc per year, a small fraction of current US domestic module production, to replace Diablo is thus a rounding error. But the replacement wouldn’t be all-PV: competitive procurement would also elicit many other renewables, plus major demand-side resources. Their diversity in technology, sourcing, location, and constraints is a vital hedge against completion risks.
It’s true that US federal solar tariff disputes are particularly tangled at the moment, but the Biden Administration is strongly motivated to resolve them quickly; it’s inconceivable that the present mess would be allowed to persist for another three years. Workarounds are also widespread, such as bifacial modules, currently exempt from tariffs; they’re used mainly in utility-scale projects, but also in a fast-growing 9% of California’s strong 2021 rooftop solar market. Moreover, California has some attractive rural windpower sites, and the nation’s best business case for behind-the-meter distributed windpower.
What has changed since PG&E agreed in 2016 to phase out Diablo Canyon?
To assess the reasonableness and urgency of the Governor’s radical proposal, it helps to ask what has changed since PG&E’s 2016 analysis and decision. Spoiler alert: nothing that would materially support it, but a great deal that makes it clearly ill-advised. Here are the details:
- The business case, speed, risk profile, and grid-reliability case for demand-side and renewable competitors have all greatly improved. Globally, renewables now provide about 95% of the world’s net additions of generating capacity. They’re consistently adding hundreds of times more capacity and annual output than nuclear power does (though in most years it’s shrinking). Renewables’ cost continues to trend down and their performance up—the opposite of nuclear trends. Nuclear power is decades into a slow-motion commercial collapse, both in the US and abroad, while renewables took over: PV was 44% and wind was 33% of 2021 US capacity additions, despite cheap gas.
- The energy-efficiency resource—already half the historic (IEA) and prospective (IPCC) global climate solution—is now known to be far larger than California’s or others’ standard analyses assume, yet at even lower cost, and often with increasing returns. The demand-response resource is also now known to be much larger than was assumed or is being captured.
- Climate concerns have intensified. Does that shift mean we must buy every possible solution? On the contrary, it reinforces the need to invest judiciously rather than indiscriminately: to buy fast, cheap, sure resources rather than slow, costly, speculative ones. (California’s deep drought, by making hydropower erratic, does expand the need for planned solar and windpower, which drought doesn’t affect, or for efficient and timely electricity use, or both. So does hotter weather. Current plans include all this, and can scale to meet greater needs. The question is not whether but when and how surely.)
- Many operators have closed operating nuclear reactors that are licensed but uneconomic to run—and therefore not climate-effective either, making climate change worse than if the cheapest carbon-free sources were bought instead. State-level data confirm (even when the operators gives little or no notice) that within typically a year from nuclear closure, or virtually always within two years, the lost nuclear output is replaced by demand-side and renewable resources, so power-sector CO2 emissions resume their decline. Thus claims that nuclear closure means lastingly burning more gas or coal are not empirically validated; any such blips are transient. After a year or two, the carbon-free replacement resources substituted for lost nuclear output begin to save more carbon than the closed plant did, because they’re cheaper than nuclear operating cost and thus save more carbon per dollar. They also continue to save carbon over far more future years. The result is a greater climate win than keeping old reactors open. The nuclear industry is anxious that this climate opportunity cost not be discussed or understood.
- Operating reactors increasingly exhibit costly geriatric problems in older fleets like those of the US (average age 42years) and France (37). Some combination of commendable operational improvements, closure of underperforming units, and laxer regulation has sustained high US fleet capacity factors, but in even more nuclear-centric France, only about 25 GW of the 63-GW nuclear fleet is now operating, turning France from a major power exporter to a major power importer (even at times of minimum load) and threatening serious power shortages in the coming winter. The standardized designs used to moderate cost increases (neither France nor anyplace else has demonstrated falling nuclear costs with higher volumes) also standardized costly flaws—in this case, serious corrosion. France now has more nuclear capacity closed for repairs or safety checks than Germany closed cumulatively during 2000–21. French nuclear shortfalls since 2019, if displaced by gas-fired generation, could far more than account for Europe’s total gas-storage deficit as Putin’s War began—a major blow to European energy security. Indeed, comparing the French and German power system suggests that an open and competitive grid where all technologies, sizes, ownerships, and locations can compete fairly yields greater energy security and lower wholesale power prices than a closed, central-plant-based, nuclear-centric grid.
- Smaller and different kinds of reactors have lately been vigorously proposed and heavily subsidized. Even at this early stage, they are turning out to have unpromising economics, unattractive business risks, no material ability to help with climate (the US grid will be decarbonized before they could scale), and worrisome new safety, waste, and proliferation issues. Vendors seem unwilling to bear the cost and performance risks.
- The already-weak, though still widespread, belief that keeping the grid reliable as it becomes renewable requires “clean firm” thermal generation—nuclear or fossil-fueled power plants—has become technically unsupportable. Contrary analysis and experience demonstrate highly reliable performance in largely or wholly renewable grids. Synchronous condensers and grid-forming inverters can now provide all ancillary services needed for grid stability, more quickly and precisely than traditional rotating machines, even at multi-GW scale. Counting grid integration costs, not just bare levelized costs of electricity, makes nuclear power even less competitive with variable renewables (let alone energy efficiency), because central thermal plants’ forced outages tend to be larger, longer, more abrupt, and less predictable than those of solar and windfarms, thus requiring more and costlier backup or firming resources. California’s pioneering commitment to all-renewable electricity is now becoming mainstream.
- The supposed need for continued thermal generation can be modeled only by excluding most of the ten carbon-free grid-balancing resource categories—as the prevalent MIT, IEA, and most other models still do. Most or all energy models now driving climate and electricity policy have other grave structural flaws too, such as not competing or comparing demand-side with supply-side resources, and not using renewables’ observed market prices and price behaviors (including actual learning curves). But a few recent models that start to count the full portfolio of grid-balancing resources confirm stable grids with little or no long-duration storage, even in severe conditions.
- It was already clear well before 2016 that neither new nor existing nuclear plants have a business case or an operational need. That is far more obviously true in 2022—most of all from the excellent international performance of high-variable-renewable grids, even without adding bulk storage. No responsible party in California, therefore, thought it worth analyzing or suggesting an extension in Diablo Canyon’s planned phaseout when the initial 40-year licenses expire. Tellingly, none of the five main California utilities’ post-2016 decarbonization plans—the most ambitious published by PG&E itself in June 2022—recommended extending Diablo Canyon’s operating life. Neither did the latest plans by any of California’s grid, electricity, or energy regulatory agencies. Neither did a major independent analysis, published in May 2022 as a roadmap for 85% carbon-free electricity by 2030 with stress-tested reliability. Instead, it found that despite planned Diablo Canyon and gas-plant retirements, California could meet an August 2030 peak load 22%, or more than 10 GW, above the equivalent 2020 peak. A few PowerPoint slides sketched for this hearing do not a real analysis make. After decades of contrary evidence, the burden of proof that there’s a dangerous capacity gap and that Diablo life extension could cost-effectively, practically, and reliably fill it seems impossible to bear.
- Meanwhile and in contrast, the nuclear industry and its allies have conducted an impressively powerful and effective lobbying and publicity campaign to deny and obfuscate these facts, and in California, to create the illusion that resource adequacy or climate goals or both require Diablo Canyon’s operating life to be extended beyond 2024/25. A nuclear advocate’s gubernatorial candidacy has added political overtones. This campaign, backed by prominent but seemingly misguided allies, has triggered a reexamination of Diablo’s closure schedule, including this Workshop. The federal Administration—the most pro-nuclear in history—has also added vast new subsidies for existing nuclear plants (and massive grants for new ones), plus special subsidies that might (under rules already fudged) apply to keeping Diablo open. Thus some but far from all of the unknown cost of extending Diablo’s operating life would be socialized to US taxpayers rather than borne solely by California tax- and ratepayers—those served by all private and community-choice providers, not just PG&E customers. This distorts California’s economic incentives, encouraging irrational choices. It’s a high price to pay to give the nuclear industry and its allies a political trophy they desperately crave to distract from their tottering enterprise’s commercial collapse.
Conclusions
If California policymakers soberly weigh all these factors with their usual sophistication, I think they will draw five conclusions:
- There is no sound, let alone compelling, reason to disturb the existing Diablo phaseout agreement. Keep calm and carry on.
- If there are real concerns about the timely substitution of competitively procured, carbon-free demand- and supply-side resources for Diablo’s output after 2024/25, resolve those concerns by improving existing procurement, approval, and deployment processes—not by upending, diluting, or displacing them. If an “insurance policy” were desired in case currently robust resource acquisitions faltered, it’s hard to imagine that Diablo extension could seriously contend for that role. However, it could be interesting to see what total payment PG&E would require to cover the resulting costs and risks, i.e. what the firm would bid in a competitive process if it had to deliver results, without the heavy hand of state regulators on the scales.
- California does not need and cannot afford all obtainable resources. Choosing one resource excludes others, due to the economic principle of “opportunity cost” (which means you can’t spend the same dollar on two different things at the same time) and because no generator can serve a load that another resource is already serving. So forcing Diablo’s 2.2 GW of net output to stay on the grid beyond its planned closure means that either Diablo will run less (worsening its operating economics) because the added renewables and demand-side resources being installed to replace it are allowed to the job cheaper, or Diablo will somehow gain priority over and displace those resources that could serve customers at much lower cost. Either outcome would waste money, because if there is a supply/demand gap, it must be filled only once, not twice. Nor could proposed new uses of Diablo Canyon electricity, such as desalination or hydrogen production, make its electricity competitive with new carbon-free resources: the advantage of using waste-heat-warmed seawater can’t bridge the basic cost gap.
- Extending Diablo’s life would be such a nightmarishly complex process, with so many moving parts—many dependent on parties and choices not under California’s control, and some completely unpredictable due to unforeseeable technical or natural events—that it must be considered a speculative resource. Rationally considered, it is far more speculative than the non-nuclear, non-fossil resources of which California has uniquely deep and favorable experience. This all-or-nothing 2.2-GW chunk is utterly dependent on many complex steps, known and unknown, so it cannot be confidently substituted for diverse portfolios of proven, widely available resources. California should therefore devote its focus, attention, and budgets not to exploring the least attractive and least commercially viable electricity solutions but to implementing the most attractive and competitive ones already in hand—and adding more like them, especially for superefficient electricity use.
- Just this conversation about Diablo also has an opportunity cost. It has already consumed a great deal of the precious time and attention of California’s political leaders and energy-policy institutions, diverting them from getting on with their vital and challenging jobs. Continuing this distraction would only delay solutions that are cheaper, surer, and working, in favor of a hypothetical resource that is costlier, riskier, and propelled more by ideological fervor than by pragmatism or logic. Doing so in haste would further heighten the risk of costly errors. That’s not smart policy. Those advocating it have had their say. California got this choice right the first time in 2016–18. Nothing important has tipped the balance; instead, the case for gracefully retiring Diablo Canyon as agreed then is even stronger today. There the matter should rest.
Jill ZamEk, Mothers for Peace Board Member –
I am a resident of Arroyo Grande, living a dozen miles downwind from Diablo Canyon.
I vigorously protest the proposal to extend the operation of Diablo Canyon. It is an enormous betrayal of trust and is outright wrong.
*It is wrong to break the retirement agreement of 2016.
*wrong to ask our CA legislators to negate environmental oversight.
*wrong to force ratepayers and taxpayers to subsidize this rescue mission.
*wrong to ignore the significant threat posed by multiple earthquake faults near the plant.
*wrong to continue to generate high level radioactive waste when there is no safe, just, and permanent storage solution.
*wrong to allow the continuation of Diablo’s unlawful cooling system.
I adamantly urge the abandonment of this proposal. Continued operation impedes the use of renewable energy on the grid. It has not and will not alleviate power outages.
Uphold and honor the agreement to shutter the reactors by 2025. And spend your time and this tremendous amount of promised money on further development, implementation, and use of truly clean energy resources.
Jane Swanson, Mothers for Peace Spokesperson –
The Joint Agreement, signed by PG&E, to permanently shut down Diablo in 2025 must be honored. Californians will not benefit from continued operations of this old, unreliable, dangerous plant that produces radioactive wastes that will be lethal for a thousand generations.
The earthquake hazards posed by Diablo are reason enough to shut it down in 2025, if not sooner. PG&E’s evaluation of the seismic hazards posed by the four active, interconnected earthquake faults nearby is not credible. The work was done in house, using newly invented methods and theories, without sufficient independent peer review. Somehow PG&E reached the conclusion that the four-fault system would create 50% less ground motion than its original evaluation of the Hosgri fault, alone. This makes no sense!
PG&E is a convicted corporate felon, responsible for nearly 100 deaths, thousands of homes and businesses burned to the ground, and hundreds of thousands of acres scorched. PG&E cannot be trusted to maintain and safely run any nuclear plant, let alone one designed in the 1960s and sited on multiple earthquake faults.
Drop the legislative proposal that would give PG&E 1.4 billion dollars of taxpayer money while at the same time exempting Diablo from environmental regulations. Don’t undermine the Agreement; don’t gamble with our future.
Ace Hoffman, an independent researcher who has studied nuclear power for more than 50 years.
Shut Diablo Canyon Nuclear Power Plant down now. Don’t even wait. Don’t relicense.
Should the state of California and Pacific Gas and Electric (PG&E) seek to relicense the aging Diablo Canyon Nuclear Power Plant’s two reactors, rather than shut them down in 2024 and 2025, as currently planned?
Absolutely not! Consider the nuclear dilemmas France is in right now:
France’s electric supply is in deep trouble as a result of relying on the most unreliable source of energy ever invented: Nuclear Power. France’s government-regulated national utility company, EDF, has just declared bankruptcy and been “taken over” by the French government. And what is the French government going to do with a bunch of broken reactors and a bunch more that cannot get enough water to operate because of a continent-wide drought?
The French would be better off turning to BOTH of the following: Better efficiency and more renewables.
Any other choice is bound to result in more expense and more problems later. Renewables are fully ready to take over, at lower cost and with much higher reliability.
Yes, higher reliability. Renewables, combined with battery storage (in electric vehicles (EVs), for example) and other forms of electrical energy storage (such as pumped hydro) is the *most* reliable energy system possible today, because it is distributed and very predictable.
The nuclear industry claims to have a >90% “reliability” factor. But they don’t want you to consider the impact of sudden unexpected long-term shutdowns. And they’ll even take a reactor “off the books” during extended shutdowns to maintain the appearance of higher capacity factors and reliability factors. And many natural disasters (fire, flood, hurricane, earthquake, etc.) require taking nuclear power plants offline just when electrical power is needed the most.
Currently, approximately half of France’s nuclear reactors are shut down. At least eight of those are shut for stress corrosion cracking of the reactor pressure vessels, which can lead to a catastrophic accident far worse than Chernobyl, Fukushima AND Three Mile Island combined. Those RPVs were built by Creusot Forge, which was discovered to be corrupt, didn’t work the metals properly, and failed to do proper testing before shipping the forgings to the reactor sites. Many other French reactors were built by the same company and if they’re not suffering from stress corrosion cracking yet…they will.
Stress corrosion cracking is the same sort of cracking that has been found on one of the Diablo Canyon’s reactor pressure vessels. And it’s the same sort of cracking which plagues the entire nuclear industry. And one key fact about stress corrosion cracking is that it is difficult to find, even more difficult to repair, and almost impossible to predict how quickly it will spread from a small problem to a catastrophic one.
Stress corrosion cracking also affects the thin-walled spent fuel canisters Diablo Canyon uses — the same kind used throughout the nuclear industry in America. The fewer of those there are in existence, the safer we all are.
DCNPP supplies only a single-digit fraction of California’s electricity needs, and a far smaller portion of our total energy needs. And on top of that, for years the large utilities have been “fudging the books” to make the percentage supplied by nuclear power seem larger than it actually is. For example, anyone who manages to disconnect from the grid completely…is completely removed from the accounting. Even those who power most of their electricity themselves often have that portion removed. So things are not as they seem, and California is a lot further along to energy independence than the large utilities want to admit.
Perhaps more importantly, the technologies needed to transition already exist. EVs exist in abundance now, and can power a typical house for days if needed. Highly efficient solar panels and wind turbines exist. Wave and tidal systems also exist and can be utilized as well. Geothermal systems have barely been tapped in the state. Electricity transmission can and should be a two-way street: Solar rooftops take up zero ground space that isn’t already being utilized, and sending excess power to the grid should result in healthy payments. (PG&E should be required to sell ALL their transmission lines to a third party, and just operate large non-nuclear and non-fossil fuel power generating systems.)
Replacing Diablo Canyon’s sporadic output with clean and reliable renewable systems is only part of the battle, of course. DCNPP’s power output can be completely eliminated with greater efficiency and NO additional capacity.
It takes a bit more effort on the part of the consumer, but not an undue amount. However, some things might require subsidized assistance to make it happen: For example, homes made of adobe, which is mostly quartz (silicon dioxide) are far better insulated than homes made of gypsum (calcium sulfate). Homes built with adobe walls last longer too — hundreds of years. They keep you cooler in the summer and warmer in the winter. So what’s the problem? Quartz is much harder, making it harder to work with, and harder to dig out of the ground. We have few, if any, adobe manufacturing plants in California. But tax breaks could change all that. Building an efficient home that lasts should be cost-effective for the original builder, so that generations of people who live there can save on electricity bills.
Electric vehicles can communicate with each other to reduce traffic congestion by taking alternate routes and by safely squeezing more cars at higher speeds into the same lanes. But that takes a lot of regulatory help, including pushing out the older, inefficient ICE cars that spew toxic vapors and are not significantly computerized with modern interconnected systems. Human-operated vehicles would be kept out of the high-speed, dense lanes, and eventually from all the main highways and byways. Sorry, but technology MUST move forward if civilization is to survive!
People who want DCNPP to stay open complain loudly that some of these technologies suggested here (and many others) don’t exist in fully deployable form right now. This is largely completely false, but for those items for which it might be somewhat correct, I’d like to know why those same pro-nukers ignore the fact that the nuclear power industry has STILL not even begun to solve the nuclear waste problem. Letting the waste sit in deadly piles at widely scattered locations in California is a recipe for disaster: That waste is vulnerable to airplane strikes (accidental OR on purpose), other acts of terrorism, war, earthquakes, and many other hazards (including, for the coastal nuclear waste sites, tsunamis that could be hundreds of feet tall).
Nuclear waste takes millions of years to decay to less toxic, or non-toxic, isotopes, but the rate of decay slows greatly over time. So the sooner California stops making new nuclear waste, the better by far.
Do NOT relicense the Diablo Canyon Nuclear Power Plant. Doing so is a recipe for disaster. It sets the stage for a prolonged extreme risk. Although the current “offer” (or rather, “devil’s bargain”) is that the plant will only remain open for an extra five to seven years so that renewables can “ramp up” in the meantime, that’s NOT what the license would be for: That would be 20 years, with another extension possible after that, according to the biased, industry-funded and industry-lapdog federal Nuclear Regulatory Commission (NRC), which has already licensed some reactors for an incredible 80 years of creating nuclear waste (and electricity), with talk of going to 100 year extensions.
Embrittlement, rust, stress corrosion cracking — call it what you will, an aging reactor is a dangerous reactor (so is a new one).
Lastly, it must not be ignored that PG&E has been deferring numerous maintenance issues they would have resolved by now if they had expected to keep the reactors operating beyond their current close dates. These repairs will cost downtime and ratepayer money and add to the reactor’s accident risk potential unless they are properly handled in a timely manner. The costs of any repairs will be paid with money that would be far better spent building up California’s renewables portfolio. And after they are done (at great expense) one can completely expect PG&E to apply to keep the reactors operating for the rest of the license period — and beyond. PG&E has proven their dishonest intentions time and again. Don’t be fooled this time.